Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.463
Filter
1.
Cells ; 13(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38727316

ABSTRACT

Epithelial-mesenchymal transition (EMT) is a process during which epithelial cells lose epithelial characteristics and gain mesenchymal features. Here, we used several cell models to study migratory activity and redistribution of cell-cell adhesion proteins in cells in different EMT states: EGF-induced EMT of epithelial IAR-20 cells; IAR-6-1 cells with a hybrid epithelial-mesenchymal phenotype; and their more mesenchymal derivatives, IAR-6-1-DNE cells lacking adherens junctions. In migrating cells, the cell-cell adhesion protein α-catenin accumulated at the leading edges along with ArpC2/p34 and α-actinin. Suppression of α-catenin shifted cell morphology from fibroblast-like to discoid and attenuated cell migration. Expression of exogenous α-catenin in MDA-MB-468 cells devoid of α-catenin drastically increased their migratory capabilities. The Y654 phosphorylated form of ß-catenin was detected at integrin adhesion complexes (IACs). Co-immunoprecipitation studies indicated that α-catenin and pY654-ß-catenin were associated with IAC proteins: vinculin, zyxin, and α-actinin. Taken together, these data suggest that in cells undergoing EMT, catenins not participating in assembly of adherens junctions may affect cell migration.


Subject(s)
Actin Cytoskeleton , Cell Movement , Epithelial-Mesenchymal Transition , alpha Catenin , Humans , Actin Cytoskeleton/metabolism , alpha Catenin/metabolism , beta Catenin/metabolism , Vinculin/metabolism , Adherens Junctions/metabolism , Cell Adhesion , Actinin/metabolism , Cell Line, Tumor , Zyxin/metabolism , Phosphorylation , Integrins/metabolism , Animals , Epithelial Cells/metabolism
2.
Sci Rep ; 14(1): 8500, 2024 04 11.
Article in English | MEDLINE | ID: mdl-38605102

ABSTRACT

Intrauterine growth restriction (IUGR) occurs both in humans and domestic species. It has a particularly high incidence in pigs, and is a leading cause of neonatal morbidity and mortality as well as impaired postnatal growth. A key feature of IUGR is impaired muscle development, resulting in decreased meat quality. Understanding the developmental origins of IUGR, particularly at the molecular level, is important for developing effective strategies to mitigate its economic impact on the pig industry and animal welfare. The aim of this study was to characterise transcriptional profiles in the muscle of growth restricted pig foetuses at different gestational days (GD; gestational length ~ 115 days), focusing on selected genes (related to development, tissue injury and metabolism) that were previously identified as dysregulated in muscle of GD90 fetuses. Muscle samples were collected from the lightest foetus (L) and the sex-matched foetus with weight closest to the litter average (AW) from each of 22 Landrace x Large White litters corresponding to GD45 (n = 6), GD60 (n = 8) or GD90 (n = 8), followed by analyses, using RT-PCR and protein immunohistochemistry, of selected gene targets. Expression of the developmental genes, MYOD, RET and ACTN3 were markedly lower, whereas MSTN expression was higher, in the muscle of L relative to AW littermates beginning on GD45. Levels of all tissue injury-associated transcripts analysed (F5, PLG, KNG1, SELL, CCL16) were increased in L muscle on GD60 and, most prominently, on GD90. Among genes involved in metabolic regulation, KLB was expressed at higher levels in L than AW littermates beginning on GD60, whereas both IGFBP1 and AHSG were higher in L littermates on GD90 but only in males. Furthermore, the expression of genes specifically involved in lipid, hexose sugar or iron metabolism increased or, in the case of UCP3, decreased in L littermates on GD60 (UCP3, APOB, ALDOB) or GD90 (PNPLA3, TF), albeit in the case of ALDOB this only involved females. In conclusion, marked dysregulation of genes with critical roles in development in L foetuses can be observed from GD45, whereas for a majority of transcripts associated with tissue injury and metabolism differences between L and AW foetuses were apparent by GD60 or only at GD90, thus identifying different developmental windows for different types of adaptive responses to IUGR in the muscle of porcine foetuses.


Subject(s)
Fetal Development , Fetal Growth Retardation , Muscle, Skeletal , Swine , Humans , Animals , Male , Female , Swine/genetics , Swine/physiology , Fetal Growth Retardation/genetics , Fetal Growth Retardation/metabolism , Muscle, Skeletal/metabolism , Gene Expression Regulation, Developmental , Fetal Development/genetics , Transcriptome , Gestational Age , Real-Time Polymerase Chain Reaction , Immunohistochemistry , Fetus/metabolism , Genes, Developmental , MyoD Protein/genetics , MyoD Protein/metabolism , Actinin/genetics , Actinin/metabolism
3.
Parasit Vectors ; 17(1): 165, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38556882

ABSTRACT

BACKGROUND: Trichomonas vaginalis is the most common nonviral sexually transmitted disease (STI) worldwide. Vaccination is generally considered to be one of the most effective methods of preventing infectious diseases. Using AP65, AP33 and α-actinin proteins, this research aims to develop a protein vaccine against Trichomonas vaginalis. METHODS: Based on the B-cell and T-cell epitope prediction servers, the most antigenic epitopes were selected, and with the necessary evaluations, epitope-rich domains of three proteins, AP65, AP33, and α-actinin, were selected and linked. Subsequently, the ability of the vaccine to interact with toll-like receptors 2 and 4 (TLR2 and TLR4) was assessed. The stability of the interactions was also studied by molecular dynamics for a duration of 100 nanoseconds. RESULTS: The designed protein consists of 780 amino acids with a molecular weight of 85247.31 daltons. The results of the interaction of the vaccine candidate with TLR2 and TLR4 of the immune system also showed that there are strong interactions between the vaccine candidate protein with TLR2 (-890.7 kcal mol-1) and TLR4 (-967.3 kcal mol-1). All parameters studied to evaluate the stability of the protein structure and the protein-TLR2 and protein-TLR4 complexes showed that the structure of the vaccine candidate protein is stable alone and in complex with the immune system receptors. Investigation of the ability of the designed protein to induce an immune response using the C-ImmSim web server also showed that the designed protein is capable of stimulating B- and T-cell lymphocytes to produce the necessary cytokines and antibodies against Trichomonas vaginalis. CONCLUSIONS: Overall, our vaccine may have potential protection against Trichomonas vaginalis. However, for experimental in vivo and in vitro studies, it may be a good vaccine candidate.


Subject(s)
Parasites , Trichomonas vaginalis , Vaccines , Animals , Trichomonas vaginalis/metabolism , Actinin/metabolism , Toll-Like Receptor 2/metabolism , Protozoan Proteins/metabolism , Immunoinformatics , Toll-Like Receptor 4/metabolism , Vaccines/metabolism , Epitopes, T-Lymphocyte , Molecular Docking Simulation
4.
Eur J Immunol ; 54(3): e2350774, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38299456

ABSTRACT

The structure and dynamics of F-actin networks in the cortical area of B cells control the signal efficiency of B-cell antigen receptors (BCRs). Although antigen-induced signaling has been studied extensively, the role of cortical F-actin in antigen-independent tonic BCR signaling is less well understood. Because these signals are essential for the survival of B cells and are consequently exploited by several B-cell lymphomas, we assessed how the cortical F-actin structure influences tonic BCR signal transduction. We employed genetic variants of a primary cell-like B-cell line that can be rendered quiescent to show that cross-linking of actin filaments by α-actinin-4 (ACTN4), but not ACTN1, is required to preserve the dense architecture of F-actin in the cortical area of B cells. The reduced cortical F-actin density in the absence of ACTN4 resulted in increased lateral BCR diffusion. Surprisingly, this was associated with reduced tonic activation of BCR-proximal effector proteins, extracellular signal-regulated kinase, and pro-survival pathways. Accordingly, ACTN4-deficient B-cell lines and primary human B cells exhibit augmented apoptosis. Hence, our findings reveal that cortical F-actin architecture regulates antigen-independent tonic BCR survival signals in human B cells.


Subject(s)
Actins , Receptors, Antigen, B-Cell , Humans , Actinin/metabolism , Actins/metabolism , B-Lymphocytes , Receptors, Antigen, B-Cell/metabolism , Signal Transduction
5.
Nat Commun ; 14(1): 7989, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042893

ABSTRACT

The implications of the existence of different actins expressed in epithelial cells for network mechanics and dynamics is investigated by microrheology and confocal imaging. γ-actin predominately found in the apical cortex forms stiffer networks compared to ß-actin, which is preferentially organized in stress fibers. We attribute this to selective interactions with Mg2+-ions interconnecting the filaments' N-termini. Bundling propensity of the isoforms is different in the presence of Mg2+-ions, while crosslinkers such as α-actinin, fascin, and heavy meromyosin alter the mechanical response independent of the isoform. In the presence of myosin, ß-actin networks show a large number of small contraction foci, while γ-actin displays larger but fewer foci indicative of a stronger interaction with myosin motors. We infer that subtle changes in the amino acid sequence of actin isoforms lead to alterations of the mechanical properties on the network level with potential implications for specific biological functions.


Subject(s)
Actinin , Actins , Actins/metabolism , Actinin/metabolism , Myosins/metabolism , Protein Isoforms , Ions , Actin Cytoskeleton/metabolism
6.
Biochem Soc Trans ; 51(6): 2005-2016, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38095060

ABSTRACT

The PDZ and LIM domain (PDLIM) proteins are associated with the actin cytoskeleton and have conserved in roles in metazoan actin organisation and function. They primarily function as scaffolds linking various proteins to actin and its binding partner α-actinin via two conserved domains; an N-terminal postsynaptic density 95, discs large and zonula occludens-1 (PDZ) domain, and either single or multiple C-terminal LIN-11, Isl-1 and MEC-3 (LIM) domains in the actinin-associated LIM protein (ALP)- and Enigma-related proteins, respectively. While their role in actin organisation, such as in stress fibres or in the Z-disc of muscle fibres is well known, emerging evidence also suggests a role in actin-dependent membrane trafficking in the endosomal system. This is mediated by a recently identified interaction with the sorting nexin 17 (SNX17) protein, an adaptor for the trafficking complex Commander which is itself intimately linked to actin-directed formation of endosomal recycling domains. In this review we focus on the currently understood structural basis for PDLIM function. The PDZ domains mediate direct binding to distinct classes of PDZ-binding motifs (PDZbms), including α-actinin and other actin-associated proteins, and a highly specific interaction with the type III PDZbm such as the one found in the C-terminus of SNX17. The structures of the LIM domains are less well characterised and how they engage with their ligands is completely unknown. Despite the lack of experimental structural data, we find that recently developed machine learning-based structure prediction methods provide insights into their potential interactions and provide a template for further studies of their molecular functions.


Subject(s)
Actinin , Actins , Animals , Actins/metabolism , Actinin/chemistry , Actinin/metabolism , PDZ Domains , Actin Cytoskeleton/metabolism , LIM Domain Proteins/metabolism , Protein Binding
7.
J Exp Clin Cancer Res ; 42(1): 335, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38057867

ABSTRACT

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignant tumors globally. Understanding the molecular basis of tumor progression and drug resistance can offer innovative strategies to enhance clinical outcomes for HNSCC patients. METHODS: The cytoskeletal remodeling genes associated with cisplatin resistance were screened using a PCR array. The role of alpha-actinin 1 (ACTN1) in modulating cisplatin resistance and tumorigenesis in HNSCC was evaluated both in vitro and in vivo. Co-immunoprecipitation (Co-IP), IP-mass spectrometry (MS), western blotting, dual-luciferase assay, and bioinformatics analysis were performed to elucidate the underlying mechanisms involved. RESULTS: Our study identifies ACTN1 as a crucial contributor to cisplatin resistance and tumorigenesis in HNSCC, as evidenced across cellular, animal, and patient-derived xenograft models. From a clinical perspective, overexpression of ACTN1 significantly correlates with a suboptimal response to neoadjuvant chemotherapy and reduced overall survival in HNSCC patients. Mechanistically, ACTN1 predominantly activates ß-catenin-mediated signaling by promoting the interaction between myosin heavy chain 9 (MYH9) and GSK-3ß, leading to the ubiquitin-dependent degradation of GSK-3ß. ACTN1 also interacts with integrin ß1, subsequently activating the FAK/PI3K/AKT pathway, providing an additional avenue for the activation of ß-catenin signaling. Our study also unveils that the ß-catenin/c-Myc axis transcriptionally regulates ACTN1, thereby creating a positive feedback loop promoting HNSCC tumorigenesis and drug resistance. CONCLUSIONS: These insights underscore the novel mechanisms that highlight ACTN1's pivotal role in driving HNSCC progression and resistance to chemotherapy, suggesting ACTN1 as a promising therapeutic target in HNSCC management.


Subject(s)
Cisplatin , Head and Neck Neoplasms , Animals , Humans , Cisplatin/pharmacology , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Integrin beta1/metabolism , Phosphorylation , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Actinin/genetics , Actinin/metabolism , Cell Line, Tumor , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Cell Proliferation , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism
8.
Sci Rep ; 13(1): 22729, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38123655

ABSTRACT

FRET-based sensors are utilized for real-time measurements of cellular tension. However, transfection of the sensor gene shows low efficacy and is only effective for a short period. Reporter mice expressing such sensors have been developed, but sensor fluorescence has not been measured successfully using conventional confocal microscopy. Therefore, methods for spatiotemporal measurement of cellular tension in vivo or ex vivo are still limited. We established a reporter mouse line expressing FRET-based actinin tension sensors consisting of EGFP as the donor and mCherry as the acceptor and whose FRET ratio change is observable with confocal microscopy. Tension-induced changes in FRET signals were monitored in the aorta and tail tendon fascicles, as well as aortic smooth muscle cells isolated from these mice. The pattern of FRET changes was distinctive, depending on tissue type. Indeed, aortic smooth muscle cells exhibit different sensitivity to macroscopic tensile strain in situ and in an isolated state. This mouse strain will enable novel types of biomechanical investigations of cell functions in important physiological events.


Subject(s)
Actinin , Fluorescence Resonance Energy Transfer , Mice , Animals , Fluorescence Resonance Energy Transfer/methods , Actinin/metabolism , Cell Line , Transfection , Microscopy, Confocal
9.
Elife ; 122023 11 03.
Article in English | MEDLINE | ID: mdl-37921850

ABSTRACT

Sarcomeres are the basic contractile units within cardiac myocytes, and the collective shortening of sarcomeres aligned along myofibrils generates the force driving the heartbeat. The alignment of the individual sarcomeres is important for proper force generation, and misaligned sarcomeres are associated with diseases, including cardiomyopathies and COVID-19. The actin bundling protein, α-actinin-2, localizes to the 'Z-Bodies" of sarcomere precursors and the 'Z-Lines' of sarcomeres, and has been used previously to assess sarcomere assembly and maintenance. Previous measurements of α-actinin-2 organization have been largely accomplished manually, which is time-consuming and has hampered research progress. Here, we introduce sarcApp, an image analysis tool that quantifies several components of the cardiac sarcomere and their alignment in muscle cells and tissue. We first developed sarcApp to utilize deep learning-based segmentation and real space quantification to measure α-actinin-2 structures and determine the organization of both precursors and sarcomeres/myofibrils. We then expanded sarcApp to analyze 'M-Lines' using the localization of myomesin and a protein that connects the Z-Lines to the M-Line (titin). sarcApp produces 33 distinct measurements per cell and 24 per myofibril that allow for precise quantification of changes in sarcomeres, myofibrils, and their precursors. We validated this system with perturbations to sarcomere assembly. We found perturbations that affected Z-Lines and M-Lines differently, suggesting that they may be regulated independently during sarcomere assembly.


Subject(s)
Myocytes, Cardiac , Sarcomeres , Sarcomeres/metabolism , Myocytes, Cardiac/metabolism , Actinin/metabolism , Myofibrils/metabolism , Connectin/metabolism , Software
10.
Int J Mol Sci ; 24(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37834023

ABSTRACT

The ACTN2 gene encodes α-actinin 2, located in the Z-disc of the sarcomeres in striated muscle. In this study, we sought to investigate the effects of an ACTN2 missense variant of unknown significance (p.A868T) on cardiac muscle structure and function. Left ventricular free wall samples were obtained at the time of cardiac transplantation from a heart failure patient with the ACTN2 A868T heterozygous variant. This variant is in the EF 3-4 domain known to interact with titin and α-actinin. At the ultrastructural level, ACTN2 A868T cardiac samples presented small structural changes in cardiomyocytes when compared to healthy donor samples. However, contractile mechanics of permeabilized ACTN2 A868T variant cardiac tissue displayed higher myofilament Ca2+ sensitivity of isometric force, reduced sinusoidal stiffness, and faster rates of tension redevelopment at all Ca2+ levels. Small-angle X-ray diffraction indicated increased separation between thick and thin filaments, possibly contributing to changes in muscle kinetics. Molecular dynamics simulations indicated that while the mutation does not significantly impact the structure of α-actinin on its own, it likely alters the conformation associated with titin binding. Our results can be explained by two Z-disc mediated communication pathways: one pathway that involves α-actinin's interaction with actin, affecting thin filament regulation, and the other pathway that involves α-actinin's interaction with titin, affecting thick filament activation. This work establishes the role of α-actinin 2 in modulating cross-bridge kinetics and force development in the human myocardium as well as how it can be involved in the development of cardiac disease.


Subject(s)
Actinin , Myofibrils , Humans , Actinin/genetics , Actinin/metabolism , Connectin/genetics , Connectin/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myofibrils/metabolism , Sarcomeres/metabolism
11.
J Muscle Res Cell Motil ; 44(4): 271-286, 2023 12.
Article in English | MEDLINE | ID: mdl-37661214

ABSTRACT

The Z-disk of striated muscle defines the ends of the sarcomere, which repeats many times within the muscle fiber. Here we report application of cryoelectron tomography and subtomogram averaging to Z-disks isolated from the flight muscles of the large waterbug Lethocerus indicus. We use high salt solutions to remove the myosin containing filaments and use gelsolin to remove the actin filaments of the A- and I-bands leaving only the thin filaments within the Z-disk which were then frozen for cryoelectron microscopy. The Lethocerus Z-disk structure is similar in many ways to the previously studied Z-disk of the honeybee Apis mellifera. At the corners of the unit cell are positioned trimers of paired antiparallel F-actins defining a large solvent channel, whereas at the trigonal positions are positioned F-actin trimers converging slowly towards their (+) ends defining a small solvent channel through the Z-disk. These near parallel F-actins terminate at different Z-heights within the Z-disk. The two types of solvent channel in Lethocerus are similar in size compared to those of Apis which are very different in size. Two types of α-actinin crosslinks were observed between oppositely oriented actin filaments. In one of these, the α-actinin long axis is almost parallel to the F-actins it crosslinks. In the other, the α-actinins are at a small but distinctive angle with respect to the crosslinked actin filaments. The utility of isolated Z-disks for structure determination is discussed.


Subject(s)
Actins , Sarcomeres , Animals , Sarcomeres/metabolism , Actins/metabolism , Actinin/metabolism , Muscle Proteins/metabolism , Cryoelectron Microscopy , Muscle, Skeletal/metabolism , Solvents/metabolism , Image Processing, Computer-Assisted
12.
FEBS J ; 290(22): 5322-5339, 2023 11.
Article in English | MEDLINE | ID: mdl-37551968

ABSTRACT

Loss of myocardial mass in a neonatal rat cardiomyocyte culture is studied to determine whether there is a distinguishable cellular response based on the origin of mechano-signals. The approach herein compares the sarcomeric assembly and disassembly processes in heart cells by imposing mechano-signals at the interface with the extracellular matrix (extrinsic) and at the level of the myofilaments (intrinsic). Experiments compared the effects of imposed internal (inside/out) and external (outside/in) loading and unloading on modifications in neonatal rat cardiomyocytes. Unloading of the cellular substrate by myosin inhibition (1 µm mavacamten), or cessation of cyclic strain (1 Hz, 10% strain) after preconditioning, led to significant disassembly of sarcomeric α-actinin by 6 h. In myosin inhibition, this was accompanied by redistribution of intracellular poly-ubiquitin K48 to the cellular periphery relative to the poly-ubiquitin K48 reservoir at the I-band. Moreover, loading and unloading of the cellular substrate led to a three-fold increase in post-translational modifications (PTMs) when compared to the myosin-specific activation or inhibition. Specifically, phosphorylation increased with loading while ubiquitination increased with unloading, which may involve extracellular signal-regulated kinase 1/2 and focal adhesion kinase activation. The identified PTMs, including ubiquitination, acetylation, and phosphorylation, are proposed to modify internal domains in α-actinin to increase its propensity to bind F-actin. These results demonstrate a link between mechanical feedback and sarcomere protein homeostasis via PTMs of α-actinin that exemplify how cardiomyocytes exhibit differential responses to the origin of force. The implications of sarcomere regulation governed by PTMs of α-actinin are discussed with respect to cardiac atrophy and heart failure.


Subject(s)
Actinin , Myocytes, Cardiac , Rats , Animals , Myocytes, Cardiac/metabolism , Actinin/genetics , Actinin/metabolism , Sarcomeres/metabolism , Myosins/metabolism , Ubiquitins/metabolism
13.
Elife ; 122023 07 25.
Article in English | MEDLINE | ID: mdl-37489746

ABSTRACT

Ca2+/calmodulin-dependent protein kinase II (CaMKII) is essential for long-term potentiation (LTP) of excitatory synapses that is linked to learning and memory. In this study, we focused on understanding how interactions between CaMKIIα and the actin-crosslinking protein α-actinin-2 underlie long-lasting changes in dendritic spine architecture. We found that association of the two proteins was unexpectedly elevated within 2 minutes of NMDA receptor stimulation that triggers structural LTP in primary hippocampal neurons. Furthermore, disruption of interactions between the two proteins prevented the accumulation of enlarged mushroom-type dendritic spines following NMDA receptor activation. α-Actinin-2 binds to the regulatory segment of CaMKII. Calorimetry experiments, and a crystal structure of α-actinin-2 EF hands 3 and 4 in complex with the CaMKII regulatory segment, indicate that the regulatory segment of autoinhibited CaMKII is not fully accessible to α-actinin-2. Pull-down experiments show that occupation of the CaMKII substrate-binding groove by GluN2B markedly increases α-actinin-2 access to the CaMKII regulatory segment. Furthermore, in situ labelling experiments are consistent with the notion that recruitment of CaMKII to NMDA receptors contributes to elevated interactions between the kinase and α-actinin-2 during structural LTP. Overall, our study provides new mechanistic insight into the molecular basis of structural LTP and reveals an added layer of sophistication to the function of CaMKII.


Subject(s)
Actinin , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Actinin/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Dendritic Spines/metabolism , Synapses/metabolism , Long-Term Potentiation
14.
Biochem Biophys Res Commun ; 670: 12-18, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37271035

ABSTRACT

Hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and restrictive cardiomyopathy (RCM) are characterized by thickening, thinning, or stiffening, respectively, of the ventricular myocardium, resulting in diastolic or systolic dysfunction that can lead to heart failure and sudden cardiac death. Recently, variants in the ACTN2 gene, encoding the protein α-actinin-2, have been reported in HCM, DCM, and RCM patients. However, functional data supporting the pathogenicity of these variants is limited, and potential mechanisms by which these variants cause disease are largely unexplored. Currently, NIH ClinVar lists 34 ACTN2 missense variants, identified in cardiomyopathy patients, which we predict are likely to disrupt actin binding, based on their localization to specific substructures in the α-actinin-2 actin binding domain (ABD). We investigated the molecular consequences of three ABD localized, HCM-associated variants: A119T, M228T and T247 M. Using circular dichroism, we demonstrate that the mutant ABD proteins can attain a well-folded state. However, thermal denaturation studies show that all three mutations are destabilizing, suggesting a structural disruption. Importantly, A119T decreased actin binding, and M228T and T247M cause increased actin binding. We suggest that altered actin binding underlies pathogenesis for cardiomyopathy mutations localizing to the ABD of α-actinin-2.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Cardiomyopathy, Hypertrophic , Humans , Actinin/genetics , Actinin/metabolism , Actins/metabolism , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Hypertrophic/genetics , Mutation
15.
J Transl Med ; 21(1): 399, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37337244

ABSTRACT

BACKGROUND: Bone marrow metastasis (BMM) is underestimated in gastric cancer (GC). GC with BMM frequently complicate critical hematological abnormalities like diffused intravascular coagulation and microangiopathic hemolytic anemia, which constitute a highly aggressive GC (HAGC) subtype. HAGC present a very poor prognosis with peculiar clinical and pathological features when compared with not otherwise specified advanced GC (NAGC). But the molecular mechanisms underlying BMM from GC remain rudimentary. METHODS: The transcriptomic difference between HAGC and NAGC were analyzed. Genes that were specifically upregulated in HAGC were identified, and their effect on cell migration and invasion was studied. The function of ACTN2 gene were confirmed by GC cell lines, bone-metastatic animal model and patients' tissues. Furthermore, the molecular mechanism of ACTN2 derived-BMM was explored by multiple immunofluorescence staining, western blot, chromatin immunoprecipitation, and luciferase reporter assays. RESULTS: We elucidated the key mechanisms of BMM depending on the transcriptomic difference between HAGC and NAGC. Five genes specifically upregulated in HAGC were assessed their effect on cell migration and invasion. The ACTN2 gene encoding protein α-Actinin-2 was detected enhanced the metastatic capability and induced BMM of GC cells in mouse models. Mechanically, α-Actinin-2 was involved in filopodia formation where it promoted the Actin filament cross-linking by replacing α-Actinin-1 to form α-Actinin-2:α-Actinin-4 complexes in GC cells. Moreover, NF-κB subunit RelA and α-Actinin-2 formed heterotrimers in the nuclei of GC cells. As a direct target of RelA:α-Actinin-2 heterotrimers, the ACTN2 gene was a positive auto-regulatory loop for α-Actinin-2 expression. CONCLUSIONS: We demonstrated a link between filopodia, BMM and ACTN2 activation, where a feedforward activation loop between ACTN2 and RelA is established via actin in response to distant metastasis. Given the novel filopodia formation function and the new mechanism of BMM in GC, we propose ACTN2 as a druggable molecular vulnerability that may provide potential therapeutic benefit against BMM of GC.


Subject(s)
Actinin , Bone Marrow Neoplasms , Stomach Neoplasms , Animals , Mice , Actinin/genetics , Actinin/metabolism , Cell Line, Tumor , NF-kappa B/metabolism , Pseudopodia/metabolism , Pseudopodia/pathology , Stomach Neoplasms/pathology
16.
J Muscle Res Cell Motil ; 44(3): 209-215, 2023 09.
Article in English | MEDLINE | ID: mdl-37133758

ABSTRACT

The techniques of X-ray protein crystallography, NMR and high-resolution cryo-electron microscopy have all been used to determine the high-resolution structure of proteins. The most-commonly used method, however, remains X-ray crystallography but it does rely heavily on the production of suitable crystals. Indeed, the production of diffraction quality crystals remains the rate-limiting step for most protein systems. This mini-review highlights the crystallisation trials that used existing and newly developed crystallisation methods on two muscle protein targets - the actin binding domain (ABD) of α-actinin and the C0-C1 domain of human cardiac myosin binding protein C (cMyBP-C). Furthermore, using heterogenous nucleating agents the crystallisation of the C1 domain of cMyBP-C was successfully achieved in house along with preliminary actin binding studies using electron microscopy and co-sedimentation assays .


Subject(s)
Actins , Muscle Proteins , Humans , Actins/metabolism , Muscle Proteins/metabolism , Cryoelectron Microscopy , Protein Binding , Actinin/metabolism
17.
Sci Rep ; 13(1): 8662, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37248294

ABSTRACT

Stress fibers are actomyosin bundles that regulate cellular mechanosensation and force transduction. Interacting with the extracellular matrix through focal adhesion complexes, stress fibers are highly dynamic structures regulated by myosin motors and crosslinking proteins. Under external mechanical stimuli such as tensile forces, the stress fiber remodels its architecture to adapt to external cues, displaying properties of viscoelastic materials. How the structural remodeling of stress fibers is related to the generation of contractile force is not well understood. In this work, we simulate mechanochemical dynamics and force generation of stress fibers using the molecular simulation platform MEDYAN. We model stress fiber as two connecting bipolar bundles attached at the ends to focal adhesion complexes. The simulated stress fibers generate contractile force that is regulated by myosin motors and [Formula: see text]-actinin crosslinkers. We find that stress fibers enhance contractility by reducing the distance between actin filaments to increase crosslinker binding, and this structural remodeling ability depends on the crosslinker turnover rate. Under tensile pulling force, the stress fiber shows an instantaneous increase of the contractile forces followed by a slow relaxation into a new steady state. While the new steady state contractility after pulling depends only on the overlap between actin bundles, the short-term contractility enhancement is sensitive to the tensile pulling distance. We further show that this mechanical response is also sensitive to the crosslinker turnover rate. Our results provide new insights into the stress fiber mechanics that have significant implications for understanding cellular adaptation to mechanical signaling.


Subject(s)
Actinin , Stress Fibers , Actinin/metabolism , Stress Fibers/metabolism , Myosins/metabolism , Actins/metabolism , Actomyosin/metabolism , Actin Cytoskeleton/metabolism
18.
Lab Invest ; 103(8): 100156, 2023 08.
Article in English | MEDLINE | ID: mdl-37119854

ABSTRACT

Paraneoplastic nephrotic syndrome (PNS) is a complication seen in cancer patients. Ultrastructural examination shows the accumulation of proteins and the presence of foot process (FP) effacement in the glomeruli of PNS patients. Previously, we reported that orthotopic xenografts of Lewis lung carcinoma 1 in C57BL/6 mice caused them to develop lung cancer with albuminuria. This implies that these mice can be used as a model of human disease and suggests that Lewis lung carcinoma 1 cell-secreted proteins (LCSePs) contain nephrotoxic molecules and cause inflammation in renal cells. As podocyte effacement was present in glomeruli in this model, such podocyte injury may be attributable to either soluble LCSeP or LCSeP deposits triggering pathological progression. LCSePs in conditioned media was concentrated for nephrotoxicity testing. Integrin-focal adhesion kinase (FAK) signaling and inflammatory responses were evaluated in podocytes either exposed to soluble LCSePs or seeded onto substrates with immobilized LCSePs. FAK phosphorylation and interleukin-6 expression were higher in podocytes attached to LCSePs substrates than in those exposed to soluble LCSePs. Notably, LCSeP-based haptotaxis gave rise to altered signaling in podocytes. When podocytes were stimulated by immobilized LCSePs, FAK accumulated at focal adhesions, synaptopodin dissociated from F-actin, and disrupting the interactions between synaptopodin and α-actinin was observed. When FAK was inhibited by PF-573228 in immobilized LCSePs, the association between synaptopodin and α-actinin was observed in the podocytes. The association of synaptopodin and α-actinin with F-actin allowed FP stretching, establishing a functional glomerular filtration barrier. Therefore, in this mouse model of lung cancer, FAK signaling prompts podocyte FP effacement and proteinuria, indicative of PNS.


Subject(s)
Carcinoma, Lewis Lung , Lung Neoplasms , Podocytes , Mice , Humans , Animals , Actins/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Actinin/metabolism , Carcinoma, Lewis Lung/metabolism , Carcinoma, Lewis Lung/pathology , Mice, Inbred C57BL , Proteinuria/metabolism , Podocytes/metabolism , Lung Neoplasms/metabolism
19.
Cells ; 12(5)2023 02 24.
Article in English | MEDLINE | ID: mdl-36899856

ABSTRACT

Pathogenic variants in ACTN2, coding for alpha-actinin 2, are known to be rare causes of Hypertrophic Cardiomyopathy. However, little is known about the underlying disease mechanisms. Adult heterozygous mice carrying the Actn2 p.Met228Thr variant were phenotyped by echocardiography. For homozygous mice, viable E15.5 embryonic hearts were analysed by High Resolution Episcopic Microscopy and wholemount staining, complemented by unbiased proteomics, qPCR and Western blotting. Heterozygous Actn2 p.Met228Thr mice have no overt phenotype. Only mature males show molecular parameters indicative of cardiomyopathy. By contrast, the variant is embryonically lethal in the homozygous setting and E15.5 hearts show multiple morphological abnormalities. Molecular analyses, including unbiased proteomics, identified quantitative abnormalities in sarcomeric parameters, cell-cycle defects and mitochondrial dysfunction. The mutant alpha-actinin protein is found to be destabilised, associated with increased activity of the ubiquitin-proteasomal system. This missense variant in alpha-actinin renders the protein less stable. In response, the ubiquitin-proteasomal system is activated; a mechanism that has been implicated in cardiomyopathies previously. In parallel, a lack of functional alpha-actinin is thought to cause energetic defects through mitochondrial dysfunction. This seems, together with cell-cycle defects, the likely cause of the death of the embryos. The defects also have wide-ranging morphological consequences.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Hypertrophic , Animals , Male , Mice , Actinin/metabolism , Heart , Ubiquitins
20.
Biomolecules ; 13(3)2023 02 28.
Article in English | MEDLINE | ID: mdl-36979385

ABSTRACT

Cells use the actin cytoskeleton for many of their functions, including their division, adhesion, mechanosensing, endo- and phagocytosis, migration, and invasion. Actin bundles are the main constituent of actin-rich structures involved in these processes. An ever-increasing number of proteins that crosslink actin into bundles or regulate their morphology is being identified in cells. With recent advances in high-resolution microscopy and imaging techniques, the complex process of bundles formation and the multiple forms of physiological bundles are beginning to be better understood. Here, we review the physiochemical and biological properties of four families of highly conserved and abundant actin-bundling proteins, namely, α-actinin, fimbrin/plastin, fascin, and espin. We describe the similarities and differences between these proteins, their role in the formation of physiological actin bundles, and their properties-both related and unrelated to their bundling abilities. We also review some aspects of the general mechanism of actin bundles formation, which are known from the available information on the activity of the key actin partners involved in this process.


Subject(s)
Actin Cytoskeleton , Actins , Actins/metabolism , Actin Cytoskeleton/metabolism , Actinin/genetics , Actinin/analysis , Actinin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...